Snail venom could be used to create 'ultra-fast-acting' insulins for diabetics

A+ A

Baku, September 14, AZERTAC

Snail venom has the potential to be harnessed as a treatment for diabetes by using it to develop ultra-fast-acting insulins, scientists have said, according to As well as finding that the natural protein inside the venom can operate faster than human insulin, scientists also discovered it can bind to human insulin receptors – indicating it could be used to create treatments for people suffering from diabetes.

The team from Australia and the US were building on previous research in which they found a species of snail that used an insulin-based venom to trap its prey. Findings showed fish would swim into the invisible venom and become paralyzed, having been placed in a state of hypoglycaemic shock.

Helena Safavi-Hemami, from the University of Utah, said they wanted to find out how the snail venom could have such a rapid effect, and if there was any possibility it could be used to develop therapies for humans.

In the latest study, published in the journal Nature Structural and Molecular Biology, the team analyzed the three-dimensional structure of the venom from Conus geographus. Their findings showed the insulin within the venom, revealing how the natural protein Con-Ins G1 works so fast – faster than human insulin. They also found the protein can bind to human insulin receptors.

Study leader Mike Lawrence, from the Walter and Eliza Hall Institute of Medical Research in Melbourne, said: "We found that cone snail venom insulins work faster than human insulins by avoiding the structural changes that human insulins undergo in order to function – they are essentially primed and ready to bind to their receptors.

"The structure of human insulins contain an extra 'hinge' component that has to open before any 'molecular handshake' or connection between insulin and receptor can take place. By studying the three-dimensional structure of this snail venom insulin we've found how to dispense with this 'hinge' entirely, which may accelerate the cell signaling process and thus the speed with which the insulin takes effect."

© Content from this site must be hyperlinked when used.


Fields with * are required.

Please enter the letters as they are shown in the image above.
Letters are not case-sensitive.